Motor controls of opaline secretion in Aplysia californica.
نویسندگان
چکیده
1. Using combined morphological and electrophysiological techniques, we have identified motor neurons in the right pleural ganglion of Aplysia californica that contribute to the release of opaline from the opaline gland. 2. Three pleural ganglion neurons were found to meet the requirements for identification as opaline gland motor neurons by a) sending processes in nerve P5, which innervates the gland; b) producing contractions of the gland in the absence of central synaptic activity; and c) producing excitatory junctional potentials (EJPs) in cells making up the opaline gland itself. The neurons can be reliably located and have been designated PLR1, PLR2, and PLR3. 3. When gland contraction is measured by the change in luminal pressure, the gland response is a graded function of low-frequency spike activity in the motor neurons. 4. Presumptive EJPs recorded from opaline gland cells are reversibly decreased in size by high extracellular Mg2+ and reversibly increased in size by raising the concentration of extracellular Ca2+. These results suggest that the presumptive EJPs are chemically mediated. The presumptive EJPs show facilitation and posttetanic potentiation. 5. The identified opaline motor neurons may constitute a significant portion of the motor input to the opaline gland via nerve P5 since hyperpolarization of the cells prevents the opaline gland response elicited by right connective stimulation in vitro. 6. We have compared the properties of the opaline motor neurons with the previously identified properties of the ink motor neurons (6--9, 19). Like the ink motor neurons, the opaline motor neurons have high resting potentials, are electrically coupled, and have no spontaneous spike activity. They also receive a slow and long-lasting evoked depolarizing synaptic input, which appears to be mediated by a decreased conductance mechanism. The firing pattern of the opaline motor neurons produced by synaptic input shows the same delayed bursting pattern previously described for the ink motor neurons. 7. The biophysical properties and synaptic input to the ink motor neurons have been shown to affect the features of inking behavior (4, 6--9, 19). The opaline motor neurons share some of these biophysical characteristics and mediate a defensive behavior similar to ink release. Further comparisons of these behaviors and their underlying neural circuits may provide a better understanding of the extent to which cellular biophysical properties and patterns of synaptic input influence the features of the behaviors that individual neurons mediate.
منابع مشابه
Neurotransmitters producing and modulating opaline gland contraction in Aplysia californica.
1. Opaline release in Aplysia provides a simple model system for examining the biochemical and electrophysiological mechanisms underlying glandular secretion and its modulation. The opaline gland is a large multivesicular structure, which is innervated by at least three large identified motor neurons located within the right pleural ganglion (28). In this paper we have investigated the roles of...
متن کاملMolecular identification of alarm cues in the defensive secretions of the sea hare Aplysia californica
Prey species possess numerous strategies to reduce predation. One tactic is to respond with antipredator behaviours when conspecific alarm cues are detected. The sea hare Aplysia californica defends itself from predators in many ways, one of which is releasing ink and opaline upon attack. Previous work showed that a mixture of ink and opaline from A. californica causes conspecifics to respond w...
متن کاملMultiple components in ink of the sea hare Aplysia californica are aversive to the sea anemone Anthopleura sola
Sea hares of the genus Aplysia rely on an array of behavioral and chemical defenses, including the release of ink and opaline, to protect themselves from predation. While many studies have demonstrated that ink and opaline are repellent to predators, very little is known about which components of these secretions are active against predators. Ink was previously shown to facilitate the escape of...
متن کاملDefense through sensory inactivation: sea hare ink reduces sensory and motor responses of spiny lobsters to food odors.
Antipredator defenses are ubiquitous and diverse. Ink secretion of sea hares (Aplysia) is an antipredator defense acting through the chemical senses of predators by different mechanisms. The most common mechanism is ink acting as an unpalatable repellent. Less common is ink secretion acting as a decoy (phagomimic) that misdirects predators' attacks. In this study, we tested another possible mec...
متن کاملA modification of the glyoxylic acid induced histofluorescence technique for demonstration of catecholamines and serotonin in tissues of Aplysia californica.
A modified glyoxylic acid technique was used to examine central and peripheral nervous tissues in Aplysia californica. In addition to confirming the distribution of catecholamines and serotonin in the central nervous system, the method demonstrated the presence of monoamines in the opaline gland and bag cell clusters where they may act as transmitters. In conjunction with electrophysiological t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 43 3 شماره
صفحات -
تاریخ انتشار 1980